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License 

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE 
COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY 
COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN 
AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED. 

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND 
AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS 
LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE 
RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH 
TERMS AND CONDITIONS. 

1. Definitions 

a. "Adaptation" means a work based upon the Work, or upon the Work and other pre-
existing works, such as a translation, adaptation, derivative work, arrangement of music 
or other alterations of a literary or artistic work, or phonogram or performance and 
includes cinematographic adaptations or any other form in which the Work may be 
recast, transformed, or adapted including in any form recognizably derived from the 
original, except that a work that constitutes a Collection will not be considered an 
Adaptation for the purpose of this License. For the avoidance of doubt, where the Work 
is a musical work, performance or phonogram, the synchronization of the Work in 
timed-relation with a moving image ("synching") will be considered an Adaptation for the 
purpose of this License. 

b. "Collection" means a collection of literary or artistic works, such as encyclopedias and 
anthologies, or performances, phonograms or broadcasts, or other works or subject 
matter other than works listed in Section 1(f) below, which, by reason of the selection 
and arrangement of their contents, constitute intellectual creations, in which the Work is 
included in its entirety in unmodified form along with one or more other contributions, 
each constituting separate and independent works in themselves, which together are 
assembled into a collective whole. A work that constitutes a Collection will not be 
considered an Adaptation (as defined above) for the purposes of this License. 

c. "Distribute" means to make available to the public the original and copies of the Work 
through sale or other transfer of ownership. 

d. "Licensor" means the individual, individuals, entity or entities that offer(s) the Work 
under the terms of this License. 
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e. "Original Author" means, in the case of a literary or artistic work, the individual, 
individuals, entity or entities who created the Work or if no individual or entity can be 
identified, the publisher; and in addition (i) in the case of a performance the actors, 
singers, musicians, dancers, and other persons who act, sing, deliver, declaim, play in, 
interpret or otherwise perform literary or artistic works or expressions of folklore; (ii) in 
the case of a phonogram the producer being the person or legal entity who first fixes the 
sounds of a performance or other sounds; and, (iii) in the case of broadcasts, the 
organization that transmits the broadcast. 

f. "Work" means the literary and/or artistic work offered under the terms of this License 
including without limitation any production in the literary, scientific and artistic domain, 
whatever may be the mode or form of its expression including digital form, such as a 
book, pamphlet and other writing; a lecture, address, sermon or other work of the same 
nature; a dramatic or dramatico-musical work; a choreographic work or entertainment in 
dumb show; a musical composition with or without words; a cinematographic work to 
which are assimilated works expressed by a process analogous to cinematography; a 
work of drawing, painting, architecture, sculpture, engraving or lithography; a 
photographic work to which are assimilated works expressed by a process analogous to 
photography; a work of applied art; an illustration, map, plan, sketch or three-
dimensional work relative to geography, topography, architecture or science; a 
performance; a broadcast; a phonogram; a compilation of data to the extent it is 
protected as a copyrightable work; or a work performed by a variety or circus performer 
to the extent it is not otherwise considered a literary or artistic work. 

g. "You" means an individual or entity exercising rights under this License who has not 
previously violated the terms of this License with respect to the Work, or who has 
received express permission from the Licensor to exercise rights under this License 
despite a previous violation. 

h. "Publicly Perform" means to perform public recitations of the Work and to 
communicate to the public those public recitations, by any means or process, including 
by wire or wireless means or public digital performances; to make available to the public 
Works in such a way that members of the public may access these Works from a place 
and at a place individually chosen by them; to perform the Work to the public by any 
means or process and the communication to the public of the performances of the 
Work, including by public digital performance; to broadcast and rebroadcast the Work 
by any means including signs, sounds or images. 

i. "Reproduce" means to make copies of the Work by any means including without 
limitation by sound or visual recordings and the right of fixation and reproducing 
fixations of the Work, including storage of a protected performance or phonogram in 
digital form or other electronic medium. 

2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or restrict any uses 
free from copyright or rights arising from limitations or exceptions that are provided for in 
connection with the copyright protection under copyright law or other applicable laws. 

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants 
You a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable 
copyright) license to exercise the rights in the Work as stated below: 

a. to Reproduce the Work, to incorporate the Work into one or more Collections, and to 
Reproduce the Work as incorporated in the Collections; and, 

b. to Distribute and Publicly Perform the Work including as incorporated in Collections. 

The above rights may be exercised in all media and formats whether now known or hereafter 
devised. The above rights include the right to make such modifications as are technically 
necessary to exercise the rights in other media and formats, but otherwise you have no rights to 
make Adaptations. Subject to 8(f), all rights not expressly granted by Licensor are hereby 
reserved, including but not limited to the rights set forth in Section 4(d). 



4. Restrictions. The license granted in Section 3 above is expressly made subject to and 
limited by the following restrictions: 

a. You may Distribute or Publicly Perform the Work only under the terms of this License. 
You must include a copy of, or the Uniform Resource Identifier (URI) for, this License 
with every copy of the Work You Distribute or Publicly Perform. You may not offer or 
impose any terms on the Work that restrict the terms of this License or the ability of the 
recipient of the Work to exercise the rights granted to that recipient under the terms of 
the License. You may not sublicense the Work. You must keep intact all notices that 
refer to this License and to the disclaimer of warranties with every copy of the Work You 
Distribute or Publicly Perform. When You Distribute or Publicly Perform the Work, You 
may not impose any effective technological measures on the Work that restrict the 
ability of a recipient of the Work from You to exercise the rights granted to that recipient 
under the terms of the License. This Section 4(a) applies to the Work as incorporated in 
a Collection, but this does not require the Collection apart from the Work itself to be 
made subject to the terms of this License. If You create a Collection, upon notice from 
any Licensor You must, to the extent practicable, remove from the Collection any credit 
as required by Section 4(c), as requested. 

b. You may not exercise any of the rights granted to You in Section 3 above in any 
manner that is primarily intended for or directed toward commercial advantage or 
private monetary compensation. The exchange of the Work for other copyrighted works 
by means of digital file-sharing or otherwise shall not be considered to be intended for 
or directed toward commercial advantage or private monetary compensation, provided 
there is no payment of any monetary compensation in connection with the exchange of 
copyrighted works. 

c. If You Distribute, or Publicly Perform the Work or Collections, You must, unless a 
request has been made pursuant to Section 4(a), keep intact all copyright notices for 
the Work and provide, reasonable to the medium or means You are utilizing: (i) the 
name of the Original Author (or pseudonym, if applicable) if supplied, and/or if the 
Original Author and/or Licensor designate another party or parties (e.g., a sponsor 
institute, publishing entity, journal) for attribution ("Attribution Parties") in Licensor's 
copyright notice, terms of service or by other reasonable means, the name of such party 
or parties; (ii) the title of the Work if supplied; (iii) to the extent reasonably practicable, 
the URI, if any, that Licensor specifies to be associated with the Work, unless such URI 
does not refer to the copyright notice or licensing information for the Work. The credit 
required by this Section 4(c) may be implemented in any reasonable manner; provided, 
however, that in the case of a Collection, at a minimum such credit will appear, if a 
credit for all contributing authors of Collection appears, then as part of these credits and 
in a manner at least as prominent as the credits for the other contributing authors. For 
the avoidance of doubt, You may only use the credit required by this Section for the 
purpose of attribution in the manner set out above and, by exercising Your rights under 
this License, You may not implicitly or explicitly assert or imply any connection with, 
sponsorship or endorsement by the Original Author, Licensor and/or Attribution Parties, 
as appropriate, of You or Your use of the Work, without the separate, express prior 
written permission of the Original Author, Licensor and/or Attribution Parties. 

d. For the avoidance of doubt: 
i. Non-waivable Compulsory License Schemes. In those jurisdictions in which 

the right to collect royalties through any statutory or compulsory licensing 
scheme cannot be waived, the Licensor reserves the exclusive right to collect 
such royalties for any exercise by You of the rights granted under this License; 

ii. Waivable Compulsory License Schemes. In those jurisdictions in which the 
right to collect royalties through any statutory or compulsory licensing scheme 
can be waived, the Licensor reserves the exclusive right to collect such 
royalties for any exercise by You of the rights granted under this License if Your 
exercise of such rights is for a purpose or use which is otherwise than 
noncommercial as permitted under Section 4(b) and otherwise waives the right 
to collect royalties through any statutory or compulsory licensing scheme; and, 



iii. Voluntary License Schemes. The Licensor reserves the right to collect 
royalties, whether individually or, in the event that the Licensor is a member of a 
collecting society that administers voluntary licensing schemes, via that society, 
from any exercise by You of the rights granted under this License that is for a 
purpose or use which is otherwise than noncommercial as permitted under 
Section 4(b). 

e. Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted 
by applicable law, if You Reproduce, Distribute or Publicly Perform the Work either by 
itself or as part of any Collections, You must not distort, mutilate, modify or take other 
derogatory action in relation to the Work which would be prejudicial to the Original 
Author's honor or reputation. 

5. Representations, Warranties and Disclaimer 

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR 
OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF 
ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, 
INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY, 
FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF 
LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF 
ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW 
THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO 
YOU. 

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN 
NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY 
SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES 
ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS 
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 

7. Termination 

a. This License and the rights granted hereunder will terminate automatically upon any 
breach by You of the terms of this License. Individuals or entities who have received 
Collections from You under this License, however, will not have their licenses 
terminated provided such individuals or entities remain in full compliance with those 
licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License. 

b. Subject to the above terms and conditions, the license granted here is perpetual (for the 
duration of the applicable copyright in the Work). Notwithstanding the above, Licensor 
reserves the right to release the Work under different license terms or to stop 
distributing the Work at any time; provided, however that any such election will not 
serve to withdraw this License (or any other license that has been, or is required to be, 
granted under the terms of this License), and this License will continue in full force and 
effect unless terminated as stated above. 

8. Miscellaneous 

a. Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor 
offers to the recipient a license to the Work on the same terms and conditions as the 
license granted to You under this License. 

b. If any provision of this License is invalid or unenforceable under applicable law, it shall 
not affect the validity or enforceability of the remainder of the terms of this License, and 
without further action by the parties to this agreement, such provision shall be reformed 
to the minimum extent necessary to make such provision valid and enforceable. 

c. No term or provision of this License shall be deemed waived and no breach consented 
to unless such waiver or consent shall be in writing and signed by the party to be 
charged with such waiver or consent. 



d. This License constitutes the entire agreement between the parties with respect to the 
Work licensed here. There are no understandings, agreements or representations with 
respect to the Work not specified here. Licensor shall not be bound by any additional 
provisions that may appear in any communication from You. This License may not be 
modified without the mutual written agreement of the Licensor and You. 

e. The rights granted under, and the subject matter referenced, in this License were 
drafted utilizing the terminology of the Berne Convention for the Protection of Literary 
and Artistic Works (as amended on September 28, 1979), the Rome Convention of 
1961, the WIPO Copyright Treaty of 1996, the WIPO Performances and Phonograms 
Treaty of 1996 and the Universal Copyright Convention (as revised on July 24, 1971). 
These rights and subject matter take effect in the relevant jurisdiction in which the 
License terms are sought to be enforced according to the corresponding provisions of 
the implementation of those treaty provisions in the applicable national law. If the 
standard suite of rights granted under applicable copyright law includes additional rights 
not granted under this License, such additional rights are deemed to be included in the 
License; this License is not intended to restrict the license of any rights under applicable 
law. 

 

 



Investigation of the influence of nonoccurrence
sampling on Landslide Susceptibility Assessment using

Artificial Neural Networks
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Abstract

Landslide susceptibility assessment using Artificial Neural Networks (ANNs)

requires occurrence (landslide) and nonoccurrence (not prone to landslide) samples

for ANN training. We present empirical evidence that a priori intervention on

the nonoccurrence samples can produce models that are improper for generalization.

Thirteen nonoccurrence cases based on GIS data from Rolante River basin

(828.26 km2) in Brazil are studied, divided in three groups. The first group

was based on six combinations of buffers with different minimum and maximum

distances from the mapped scars (BO). The second group (RO) acquired nonoccurrence

only from a rectangle in the lowlands, known for not being susceptible to

landslides. For BR, six alternatives respectively to BO were presented, with

the inclusion of nonoccurrence samples acquired from the same rectangle used

for RO. Accuracy (acc) and the Area Under Receiving Operating Characteristic

Curve (AUC) were calculated. RO resulted in perfect discrimination between

susceptible and not susceptible to landslides (acc=1 e AUC=1). This occurred
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because the model simply provided susceptible classification to points in which

attributes are different from those in the rectangle, harming the classification

of nonoccurrence sampling points outside the rectangle. RO map shows large

areas classified as susceptible which are known to be non-susceptible. In BR,

sampling points from the rectangle, which are easy to classify, were added to the

verification sample of BR. Average acc for BO 00m (minimum buffer distance

to scars of 0 m): 89.45%, average acc for BR 00m: 92.33%, average AUC for

BO 00m: 0.9409, average AUC for BR 00m: 0.9616. Maps of groups BO and

BR were alike. This indicates that metrics can be artificially risen if biased

samples are added, although the final map is not visibly affected. To avoid this

effect, the employment of easily classifiable samples, generated based on expert

knowledge, should be made carefully.

Keywords: landslides, mass movements, South America, Rio Grande do Sul

Brazil, sediment transport, geomorphology

1. Introduction1

Landslide susceptibility assessment is the process that establishes the likelihood2

of landslide occurrence in a given area, using suitable terrain factors (Sorriso Valvo,3

2002). A possible way of assessing natural disasters hazard is to produce, using4

Geographic Information Systems (GIS) techniques, maps of susceptibility to5

the disaster. In order to generate these maps, data from previous landslides6

is usually necessary. This relates to one of the general principles of landslide7

hazard zonation, that is the past is the key to the future (Varnes, 1984; Fell8

et al., 2008).9

Landslide susceptibility assessment can be performed by a range of methods,10

that are comprised of two main approaches: qualitative and quantitative. Qualitative11

approaches are usually based on on-site observations and combinations of index12

maps elaborated by experts. One example is Anbalagan (1992) which used the13
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Landslide Hazard Evaluation factor. Aleotti and Chowdhury (1999) discuss14

that, decades ago, on-site survey was essentially the only option available that15

was not prone to subjectivity involved, though it could be costly and dangerous.16

On the other hand, quantitative approaches are based on statistical models17

(Lee and Min, 2001; Regmi et al., 2014; Hussin et al., 2016) or geotechnics18

approaches (Gökceoglu and Aksoy, 1996; Fall et al., 2006; Gutiérrez-Mart́ın,19

2020). Artificial Intelligence models may be considered included in the statistical20

category, within the quantitative approach.21

Artificial Intelligence (AI) is the theory and development of computer systems22

with the ability to act resembling human intelligence. To date, several studies23

have used AI methods for Landslide Susceptibility Mapping. AI methods used24

in this knowledge area include but are not limited to Artificial Neural Networks25

(ANNs) - used in the present paper as well as in the papers of Lee et al.26

(2004) and Ermini et al. (2005), but also Random Forest (RF) - used by Catani27

et al. (2013), Pourghasemi and Kerle (2016) and Dou et al. (2019) -, Rotation28

Forest (RoF) - used by Chen et al. (2017b) -, Fuzzy Inference Systems (FIS)29

- employed by Ercanoglu and Gokceoglu (2002) and Kanungo et al. (2006) -,30

Logistic Regression (LR) - employed by Ayalew and Yamagishi (2005) and Lee31

(2005) -, and Näıve Bayes (NB) - used by Bui et al. (2012).32

Some authors performed comparisons between AI methods. Most of the33

papers that compared ANN to other methods for landslide susceptibility assessment34

demonstrated that ANN models perform better than their counterparts. Yesilnacar35

and Topal (2005) compared ANNs to LR and calculated the global accuracy36

for both, which was 82.1% for ANN and 79.6% for LR. A comparison between37

Dempster–Shafer, LR and ANN was made by Chen et al. (2017c). The accuracies38

calculated for the validation set for the three methods were, respectively, 61.39%,39

68.94% and 69.92%. Dou et al. (2018) used both ANN and LR, and concluded40
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ANN provided a higher accuracy. These findings are also supported by Gong41

et al. (2018), that also compared ANN and LR, obtaining 82.6% and 75.4%42

accuracies for ANN and LR, respectively. Braun et al. (2019) compared the43

accuracy of three methods, namely, Decision Trees, Bayesian Networks and44

ANNs, and ANNs were better at classifying the landslide areas, with some level45

of false alarm on the classification maps. Overall, many researchers found that46

ANNs tend to provide good accuracy for landslide prediction.47

A large and growing body of literature has investigated the use of ANNs48

for landslide susceptibility assessment. As ANNs are universal approximators49

(Hornik et al., 1989), using the right training dataset, number of hidden neurons50

and activation function for these neurons, one can possibly approximate any51

existing function. However, it was not until the 2000s that studies on using52

ANNs for landslide susceptibility assessment were first published. Some pioneer53

papers on this subject were Lee et al. (2004), which used seven attributes to train54

the ANN, Ermini et al. (2005), which used a Probabilistic Neural Network, and55

Gomez and Kavzoglu (2005), which employed nine different terrain attributes56

for training. More recently, many studies have been conducted in this area, such57

as the works of Dou et al. (2015), which selected six out of 14 original attributes58

for ANN training and employed them for landslide susceptibility assessment on59

Osado Island, Japan, Chen et al. (2017a), that compared three different types60

of models, including ANNs, and Braun et al. (2019), which used ANN models61

for the same objective in Honduras.62

Sampling locations and techniques used to train, validate and verify the63

ANNs and maps generated are, at some extent, unexplored in the methodology64

presentation of published papers in landslide susceptibility assessment. As65

Zhu et al. (2018) emphasize, the employment of nonoccurrence samples is very66

important to constrain the over-prediction of high susceptibility. Some papers do67
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not provide any information about nonoccurrence sites. Ortiz and Mart́ınez-Graña68

(2018) used half of landslide sites for training, but presented no information69

about nonoccurrence samples used. Xiong et al. (2019) present some information70

about the attributes in the occurrence samples, but nonoccurrence is not commented.71

Bui et al. (2016) separates the landslide inventory in landslides used to train72

and to verify the ANN model, but they do not provide the information about73

nonoccurrence sites used to train. In the work of Can et al. (2019), it is stated74

that equal numbers (196) of occurrence and nonoccurrence samples were used75

to train the ANN, but neither the location nor the parameters of nonoccurrence76

samples are presented. On the other hand, Zare et al. (2013) presented the77

frequency ratio between occurrence and nonoccurrence for each factor used to78

train the ANN, and Pham et al. (2017) showed the location of every point.79

Still, to date there has been little agreement on the methods used to acquire80

nonoccurrence (safe places, not prone to landslides) samples. Pradhan and Lee81

(2010), Dou et al. (2018), Polykretis and Chalkias (2018) and Shirzadi et al.82

(2019) used random points outside the landslide scars. Braun et al. (2019)83

employed all locations with no landslides recorded as nonoccurrence samples,84

and created copies of landslide-prone samples in order to have a balance of the85

two classes on the training set. Merghadi et al. (2018) divided the randomly86

sampled points in ten divisions, using nine of them to train and one to validate,87

and repeated the sampling procedure five times. Their evaluation metrics were88

averaged between the 50 models trained. Pham et al. (2017) presented the89

location of all occurrence and nonoccurrence points used for training and for90

validation on a map, on which it is possible to see the points are well-distributed.91

Gomez and Kavzoglu (2005) selected nonoccurrence samples from places where92

landslide initialization is not likely to happen, such as on river channels and93

terrains with slope angles lower than five degrees. The accuracy achieved by94
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the ANN for areas mapped as not susceptible to landslides was about 95%.95

The generated map shows large areas as highly susceptible and appears to had96

been strongly influenced by Elevation attribute. Choi et al. (2010) executed an97

ANN trained for one location in another location. Analogously, in their study,98

nonoccurrence samples were taken from points in which the slope was zero.99

When the ANN models are applied to the areas for which they were calculated,100

large areas appear to have susceptibility indexes over 0.8.101

Xiao et al. (2010) did not use ANNs but a Generalized Additive Model,102

which is a variation of LR, to propose a method for artificially generating103

nonoccurrence samples. This method is based on occurrence samples and is104

called Target Space Exteriorization Sampling. Samples are created by changing105

the values of one or more attributes so that they are out of the range considered106

for susceptibility. They compared their method to other two approaches. One107

of them is using random samples with a minimum distance of 85 m from the108

scars (called Buffer Controlling Sampling). The other one is using these random109

samples with outliers filtered out (called Iteratively Refined Sampling). They110

concluded that the proposed sampling method provided satisfactory evaluation111

metrics and a more desirable probability distribution of outputs than the other112

two. Filtering outliers out generated higher metrics than using the original113

(random) dataset. Analyzing this finding from a different point of view, higher114

evaluation metrics could possibly be caused by this intervention, which eliminates115

some of the nonoccurrence samples that would be hardest to classify.116

In the paper of Hong et al. (2019), that compared four methods for nonoccurrence117

sampling using RF, the geographical locations from which the nonoccurrence118

samples could be acquired by each sampling method are shown. Also, it is119

possible to see that methods which exclude wider areas around the landslide120

scars result in susceptibility maps with large areas classified as susceptible,121
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and this effect intensifies as the balance between occurrence and nonoccurrence122

samples changes by the removal of some nonoccurrence samples. This was123

observed by Hong et al. (2019) but the underlying causes were not researched.124

Zhu et al. (2019) employed a similarity-based approach for acquiring nonoccurrence125

samples for landslide susceptibility mapping using SVM, RF and LR. A reliability126

index was calculated for nonoccurrence samples, based on how much those127

samples attributes differ from the occurrence samples attributes. At some128

extent, this can be considered expert knowledge intervention on the dataset.129

Zhu et al. (2019) acknowledged that using samples with reliability index over130

0.5 harms the correct classification of nonoccurrence areas, generating maps131

that overestimate susceptible areas, even if the models based on these samples132

showed the highest accuracy metrics. Their explanation is that, in these cases,133

occurrence and nonoccurrence samples are too different. Nevertheless, the134

possible non-applicability of metric comparisons for the analyzed cases was not135

discussed. In theory, higher accuracies indicate better modeling capabilities,136

however, Zhu et al. (2019) results can be seen in a new light. A possibility to be137

contemplated is that nonoccurrence samples with higher reliability indexes can138

be easier to classify by a data-driven model than samples with low reliability139

indexes. However, this may bias the evaluation metrics calculated based on140

them and possibly make them unsuited for direct comparisons.141

About the occurrence sampling methods, a number of studies have begun142

to examine sampling strategies for landslide hazard assessment. Süzen and143

Doyuran (2004) proposed the seed cells method, in which the landslide occurrence144

samples would be acquired from zones that are considered to represent the145

undisturbed (i.e. before the occurrence of the event) morphological conditions,146

acquired from the vicinity of the landslide polygon. The location of these seed147

cells is acquired using a buffer from the mapped scars, upstream of the scars.148
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Wang et al. (2013) used logistic regression and employed a 50 m buffer of149

the landslide seed cells. Only the location of occurrence samples is given by150

the seed cell method, the location of nonoccurrence samples is not discussed.151

Yilmaz (2010) investigated three possible techniques to select which area should152

be included in the occurrence samples, using the location of landslide scars.153

However, he did not elucidate how the nonoccurrence samples should be taken.154

Yao et al. (2008), on the other hand, compared the use of two-class (occurrence155

and nonoccurrence) Supporting Vector Machine (SVM) with one-class (occurrence156

only) correspondent model, and detected that results improved when using the157

two-class model, noticeably showing that nonoccurrence samples matter.158

Evaluation metrics such as Area Under Receiver Operating Characteristic159

(ROC) Curve (AUC) (DeLong et al., 1988) and accuracy (acc) are reported in160

many papers of the research area. Although, in many of these papers, the base161

samples (and their locations) used for calculating the evaluation metrics are not162

presented. In some papers, only the test area was used for these calculations163

(Kawabata and Bandibas, 2009; Merghadi et al., 2018), or a separate statistic164

is calculated for the test set (Kumar et al., 2018). In others, the whole dataset165

composed of training, validation - if present - and verification samples is used166

to calculate the evaluation metrics (Garćıa-Rodŕıguez and Malpica, 2010; Zhu167

et al., 2018). This is relevant because some groups of samples are remarkably168

easier to classify than others. Does the criterion used to select nonoccurrence169

samples for landslide susceptibility mapping influence the generalization ability170

of the ANN model? Also, is it possible that, when we select easily classifiable171

samples, we facilitate the modeling process, and attain inflated evaluation metrics,172

without necessarily this correlating to a better generalization ability?173

Notably, the results of the evaluation metrics will not be reliable if the174

experiment planning is not well conduced regarding the verification samples.175
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One should notice that the best criteria are the evaluation metrics, but this176

is only true if the verification sample, used for comparison between models, is177

representative of the application areas studied, and subjected to same triggering178

factors. This paper discusses the necessity of classifications that are not obvious,179

to avoid biased resulting models. We therefore provide empirical evidence180

that the detection of bias on the resulting models is hard if the nonoccurrence181

verification samples are acquired from obvious nonoccurrence areas.182

Overall, the studies here depicted highlight the need for more investigation183

into the samples used to train, validate (when applicable) and verify the employed184

ANNs. In this paper, we aim to show how different nonoccurrence sampling185

techniques can influence the resulting susceptibility map and statistics. Notably,186

nonoccurrence sampling based on expert knowledge of susceptibility, here represented187

by acquiring nonoccurrence samples from the lowlands. If sampling is done188

exclusively in the scars proximity, there is a risk that the model, because it189

does not mark the lowlands as occurrence sites, fails when applied to a larger190

area. This would make the specialist to limit the model application area to191

places where, according to their expert knowledge, have greater probability to192

be susceptible. In this case, they would determine (therefore, intervening) that193

the other regions would be nonoccurrence sites. The inclusion of a rectangle in194

the lowlands is based on making the model identify areas that are notably not195

susceptible to landslides without the need to intervene during the application196

of the model, intervening, although, in the sampling process. The idea is197

interesting, but it should be analyzed so that we provide evidence on whether198

it is successful.199

Through a rather empirical approach, we aim to investigate how a sampling200

procedure in which the nonoccurrence points are acquired from areas known201

not to be prone to landslides influences the evaluation metrics. Thus, metrics202
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can be affected in an apparently positive way, although inaccurate susceptibility203

maps can be generated. This sampling procedure, portrayed here, is based on204

the acquisition of samples from a lowland area on the valley, known not to be205

prone to landslides. In opposition, samples can be acquired from close locations206

to the places where the landslides occurred. This possibility is also investigated207

here.208

2. Study Area209

Our study is applied to the area of Rolante River basin, located in Rio210

Grande do Sul state, in Brazil. In Fig. 1 the location of the area is indicated.211

Zooming into it, we observe the rectangular studied area. Rolante River basin212

is highlighted for reference. It is a watershed with high sloped scarps, located213

in a predominantly rural area. In this figure, terrain elevation is plotted on214

background, for reference. The scars of the 2017 landslide events are also215

plotted.216

On January 5th, 2017, a series of landslides occurred in the area (scars217

marked on Fig. 1). They were triggered by intense rainfall on that day and218

showers that had been occurring for days. The exact amount of rain in this219

area remains unknown. It was a convective rainfall, very localized, typical of220

summer season, therefore hard to be correctly measured by satellites. According221

to Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation222

Analysis (TMPA) (Huffman et al., 2007), a spatial average of 142.44 mm of223

rainfall was recorded in the studied area, during two and a half days (57h). In224

opposition, a technical report released (Secretaria Estadual do Meio Ambiente225

and Grupo de Pesquisa em Desastres Naturais, 2017) provided rainfall measurements226

of seven local farmers in their properties, varying from 90 to 272 mm in 24 h,227

although caution should be exercised since some of their equipment did not228
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Figure 1: Map of the study area and the location of the landslide scars.

follow technical specifications.229

Even though no one was physically hurt by the natural hazard, the need230

for zonation in this area is a pressing issue. Zonation starts with a hazard231

susceptibility assessment, in this case, a landslide susceptibility assessment.232

The original data for this area is from Advanced Land Observing Satellite-1233

(ALOS), a mission of the Japan Aerospace Exploration Agency (JAXA) that234

used the Phased Array type L-band Synthetic Aperture Radar (PALSAR) to235

map the surface of some areas on Earth (ASF DAAC, 2015). The DEM was236

downloaded through Alaska Satellite Facility (ASF) Distributed Active Archive237

Center (DAAC), that operates the North American Space Agency (NASA)238

archive of Synthetic Aperture Radar (SAR) data from a variety of satellites239

and aircraft, in support of NASA’s Earth Science Data and Information System240

(ESDIS) project. According to Arnone et al. (2016), the DEM with 10 m241

spatial resolution was better suited for landslide susceptibility mapping using242
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ANNs than the ones with 2, 5, 20, 30, 40, and 50 m resolution. Among the243

DEMs available for this region, the one with the highest spatial resolution is the244

one that was chosen by the present authors for this research, which is ALOS245

PALSAR, with 12.5 m resolution. The DEM and the scar inventory are the only246

two data sources used for this model, every other attribute is generated based247

on the DEM by using software QGis. Ten attributes were generated, plus the248

terrain elevation, which is the DEM itself. The generated attributes are (Fig.249

2):250

• Aspect: the orientation, in degrees, of the hill slope;251

• Hillshade: a grayscale 3D representation of the surface;252

• Natural Logarithm of Flow Accumulation: flow accumulation based on253

flow direction, in log scale;254

• Planar Curvature: the horizontal curvature of terrain;255

• Profile Curvature: the vertical curvature of terrain;256

• Slope: the declivity of the slope, in degrees;257

• Slope Length and Steepness Factor: also known as LS-factor, it is a term258

of Universal Soil Loss Equation (USLE) for soil erosion;259

• Topographic Wetness Index (TWI): an index that considers uphill drainage260

area and slope, ln(Area/tan(SLOPE));261

• Valley Depth: the vertical distance to the channel network base level;262

• Vertical Distance to Channel Network (VDCN): the vertical distance to263

the nearest draining channel.264

Fig. 2 shows the spatial distribution of the attributes. The attributes chosen265

for this application are believed to provide significant data to the model, in266
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Figure 2: Attributes on the study area.
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terms of relationships between pixels, and to provide information about the267

relative location of each pixel on the basin. Elevation can provide the model268

with a general sense of location of the pixel, e.g. if the sample is located in269

the valley or in the plateau. Valley Depth and VDCN provide information270

of how distant (vertically) is the pixel from the valley, and from the channel271

network. Curvatures provide general information about the terrain, and Profile272

Curvature can help the model to determine the stability of an area. TWI and273

the Natural Logarithm of Flow Accumulation show the areas that are more274

prone to have bodies of water, Slope and LS Factor show the steepest and more275

prone to erosion areas, while Aspect and Hillshade provide information about276

the orientation of the terrain. Statistics for the attributes are presented in Tab.277

1. The maximum Elevation for the area is 997 m, and two measurements that278

interpret the vertical depth, Valley Depth and VDCN, have maximums between279

400 and 500 m. Average slope in the area is 13.1o, but, in the scarps area, it can280

get as high as 79.04o. Planar and Profile Curvature distributions, as expected,281

are centered in zero.282

Table 1: General statistics for each attribute, inside the study area.

Attribute Minimum Maximum Average Std. Dev.

Aspect 0.00 359.73 178.67 102.78

Elevation 15.00 997.00 543.77 312.00

Hillshade 0.00 2.29 0.96 0.44

ln of Flow Accumulation 5.05 20.55 7.98 1.90

LS Factor 0.00 122.97 3.98 3.91

Planar Curvature -1.35 1.18 0.00 0.11

Profile Curvature -3.17 1.70 0.00 0.13

Slope 0.00 79.04 13.10 9.82

TWI 0.59 25.23 7.24 2.93

Valley Depth 0.00 400.94 55.57 58.20

VDCN 0.00 454.17 36.66 50.66
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Dimensionality reduction was not performed because prior research has shown283

that these eleven attributes conceive new information to the model, and removing284

some of them causes the model performance to drop(Lucchese et al., 2020).285

3. General Sampling Procedure286

Sampling of both occurrence and nonoccurrence samples was done on QGis287

3.4. The points to be used as occurrence samples were acquired from inside the288

mapped scars polygons. To sample the maximum number of points, sampling289

points were located on a grid, so that each different point of the raster inside290

the polygons generates a sample. With this procedure, 6740 occurrence samples291

were generated.292

We used a ratio of 50% occurrence and 50% nonoccurrence samples, in order293

to have a balance between them. Nonoccurrence samples were sampled inside294

thirteen different groups of polygons so that their location could be analyzed.295

Their number was held constant and equal to 6740 for all cases. The sampling296

procedure applied inside the polygons is a random sampling with a minimum297

distance of 17.7 m. This distance is the hypotenuse of a square of side 12.5 m298

(the raster resolution) and is set to ensure that each of the points is located over299

a different raster point.300

4. Nonoccurrence sampling301

One of the most relevant questions about nonoccurrence sampling is how302

distant from the landslide scar should the sample be in order for the place to303

be considered safe. The first set of cases comprises this aspect, consisting of six304

cases in which the minimum distance from the scars in nonoccurrence sample305

differ. This minimum distance to the scars is here called buffer.306
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The polygon of the buffer areas was created to have 5 km maximum distance307

from the scars. The minimum distance from the scars is varied, ranging from308

0 m to 2.5 km. In the first group of cases, called Buffer Only or simply BO,309

nonoccurrence samples are acquired solely from this area. The sampling areas310

for each case are presented on Fig. 3. BO cases represent the logic of sampling311

from places close to the area where the landslides occurred because they may312

have had the same triggering conditions yet no landslides occurred. The rainfall313

(and other weather conditions) may have been more intense in the proximity314

of the mapped rainfall-induced landslides. Therefore, in the sampling by buffer315

area, restricting the samples to this radius implies in an assumption that, in this316

area, the rainfall was homogeneous and other terrain attributes influenced the317

occurrence (or not) of landslides. Our aim is that the ANN should be capable318

of identifying the occurrence of landslides from the input variables provided.319
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BO 2500 m

Figure 3: Buffer Only (BO) nonoccurrence sampling areas, for different minimum distances
from scar area.
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Another possible area for acquiring nonoccurrence samples is a rectangle320

in the valley area. This rectangle is shown on Fig. 4. The valley area is321

notably a safe region and its employment represents the nonoccurrence sampling322

procedure in which areas known not to be prone to landslides are taken as323

nonoccurrence samples. This rectangle in the lowlands has a physical meaning,324

because the landslides as they are a gravitational sediment movement, cannot be325

triggered in flat areas. Therefore, this is a way of integrating a priori knowledge326

in order to help the ANN model in the classification process.327
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Non-occurrence sampling areas

Figure 4: Rectangle Only (RO) sampling area.

The last sample group, named Buffer and Rectangle (BR), was trained328

considering both the buffers used for BO, and the rectangle used on RO (Fig.329

5). One should notice, even if two polygons are used, the number of total330

nonoccurrence samples is held constant, therefore the sampling points are simply331

more sparse within these areas. BR group is used to analyze the effect of332

combining areas from BO and RO in the resulting maps and statistics. We also333

investigate if the maps and metrics would be close to BO or RO, or if they have334

their own definite characteristics.335
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5. Artificial Neural Networks employed336

The Artificial Neural Networks (ANNs) used are of the type Multilayer337

Perceptron (MLP), otherwise referred as Back-propagation Neural Network by338

some authors. The MLP employed consists of three layers: input, hidden, and339

output. The use of an ANN with one hidden layer is based on the work of340

Hornik et al. (1989), which stated that a neural network with a single hidden341

layer is able to represent any measurable relationship r : Rn → Rm if it is342

appropriately trained and relies on a sufficient number of neurons. Therefore,343

for the present case, building an ANN with more than one hidden layer is not344

necessary. In the hidden layer used, 30 neurons are employed. The number of345

neurons in the hidden layer was chosen by using an in-house developed method.346

The ANN should be able to perform as accurately for the validation sample347

as a purposefully oversized model that has been trained without overfitting.348

Therefore, resulting in a parsimonious model, without loss of generalization349

capacity when compared to models with higher complexity. This method was350

further described in Lucchese et al. (2020). In the input layer, the 11 attributes351

are used. The output, consisting of one variable, susceptibility, varies from 0352

(low susceptibility) to 1 (high susceptibility).353

Some commonly employed attributes were not used to train our ANNs.354

Land use was not employed because the region of the mapped landslide scars is355

uninhabited, and that could lead our model to the erroneous assumption that356

urban areas are not prone to landslides. Public lithology maps for this region357

are available only in large scales, not compatible with our area. If used, by the358

available classification, all scars would be located over the same lithologic unit,359

and so using a lithology map would not improve training in this case, as well.360

Instead, only attributes that can be generated from a DEM were used. This361

possibly makes the model and analysis more generalizable since DEMs are freely362
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available for most of the Earth.363

For the ANNs, the delta rule used is:364

ωt = ωt−1 + τδPk +mo(ωt−1 − ωt−2) (1)

in which ω are the weights, τ is the learning rate, Pk is the input of layer k,365

and mo is the moment, set equal to 0.96 unless the error increased in the last366

epoch. t denotes the current epoch. δ is defined as eks
′
k(ηk), for which ek is the367

error on layer k and s′k(ηk) is the activation function derivative. The activation368

function employed is unipolar sigmoid.369

Learning rate used for training is heuristically varied and based on Vogl et al.370

(1988) work. The initial rate for all ANNs is τ = 0.00001. If, in a given epoch,371

the square error rises, τ = 0.5τ , if it drops, τ = 1.1τ .372

Training uses cross-validation method. For that, the original samples are373

divided in three: training (50%), validation (25%) and verification (25%). The374

70/30 ratio between training and testing samples, commonly employed on papers375

of the landslide susceptibility mapping knowledge area, could not be simply376

applied to cross-validation training, because, in this case, three sets of samples377

are needed. The first set is used for training the ANN, while the second one is378

executed at each epoch during the training, to ensure that the ANN does not379

overfit to the training data. Practically, training is stopped if no improvement380

is made in the validation sample in 10,000 epochs, thus the weights from the381

last epoch when the errors on the validation sample decreased are chosen.382

Verification (or test) set is used mainly for metric calculation because it did383

not participate in training phase, therefore it is likely unbiased. The three sets384

must be satisfactorily representative of the whole, and the training sets used385

by most authors are larger than the other two. Based on that, we distributed386

the samples in a ratio of 50/25/25 (training/validation/verification). For each387
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of the sets, the 50-50% ratio between occurrence and nonoccurrence samples is388

kept. All statistics here presented are calculated based on verification samples,389

that do not interfere in training.390

For the sampling division, the training samples are first selected, without391

replacement. A random distribution is applied to acquire 50% of the occurrence392

and 50% of the nonoccurrence samples available, making sure the extreme values393

of each attribute are selected. This is done to provide a training set with as394

much amplitude of values as possible for the ANN training, to improve ANN395

generalization capability. These samples compose the training sample, which396

is 50% of the total samples available (realistically, it can be 50.00% - 50.16%,397

because of the 22 extreme values). Then, randomly, 25% of total occurrence398

samples, and 25% of total nonoccurrence are selected, without replacement, from399

the remaining samples, to compose the validation sample. The 25% of samples400

remaining (realistically, 24.84% - 25.00%) compose the verification sample.401

For each case, five different sampling divisions between training, validation402

and verification are made. This is done to ensure the reliability of our analysis403

since the distribution of the verification samples can generate sets that have404

easier or harder to classify verification samples. We believe that, taking the405

evaluation metrics average from five divisions, the presumable variability is406

attenuated. The average of the verification set evaluation metrics for these407

five sampling divisions is calculated and presented as the final evaluation metric.408

The susceptibility maps presented for the cases are also the average between the409

maps generated by these five ANNs. Fig. 6 illustrates the five sampling divisions410

for one case, specifically, RO, showing the locations of training, validation and411

verification samples, that are visibly randomly distributed along the maps.412

For the present analysis, 325 ANNs were trained. A summary of them413

is presented on Tab. 2. Thirteen cases for different nonoccurrence sampling414
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locations are analyzed. But, within the global samples acquired from the415

polygons, five different sampling divisions between training, validation and416

verification are made. Each of the ANNs used to calculate the average is the one417

chosen from five other trained ANNs with same sampling division and different418

initial weights. Five repetitions with different random initial weights are trained419

and the ANN with the best AUC on the validation sample is chosen. Because420

the division between training, validation and verification is constant for the five421

repetitions, AUC metric can be considered unbiased and the only aspect being422

measured is the effectiveness of the initial weights. From the five trained ANNs,423

one is chosen. Its evaluation metrics for verification sample are calculated and424

its map is generated, in order to serve as one of the five factors to calculate the425

general case map and metric. A flow chart for this methodology is presented on426

Fig. 7.427

Table 2: Summary of ANNs and cases presented

Number of cases

Sampling area 6 sizes of buffers + 6 sizes of buffers
with rectangle + 1 only the rectangle

= 13 types of areas

Sampling division 5 random sampling divisions for each

Initial weights 5 repetitions of training with
different initial weights

Total number of ANNs trained 13*5*5 = 325

Our in-house ANN code was fully developed on Matlab platform. Earlier428

versions of this algorithm were employed in the papers of Fantin-Cruz et al.429

(2011), Dornelles et al. (2013), Oliveira et al. (2015), Moreira de Melo and430

Pedrollo (2015) and Sari et al. (2017).431
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Figure 7: Flow chart of the ANNs presented on the present paper.

6. Evaluation metrics and analysis432

In this paper, two main evaluation metrics are presented and analyzed,433

accuracy and AUC (DeLong et al., 1988).434

Accuracy is the rate of right answers provided by the model, or

acc =
TP + TN

TP + TN + FP + FN
(2)

in which TP is True Positive (model predicted TRUE, it was a hit), TN is True435

Negative (model predicted FALSE, it was a hit), FP is False Positive (model436

predicted TRUE, missed it), and FN is False Negative (model predicted FALSE,437

missed it). The accuracy measures the ability of the model to predict the right438

(boolean) answer, based on the samples provided. Our ANN model output is439

a continuous value between 0 (low susceptibility) and 1 (high susceptibility).440

To calculate variables TP, TN, FP, and FN, a threshold over which the output441

is considered susceptible must be established. Instead of choosing an arbitrary442

threshold, its value is varied from 0 to 1, and accuracies are calculated for each443

threshold within the limits. The threshold that provides the highest accuracy is444

chosen, usually gravitating around 0.5. Accuracy is one of the main evaluation445

metrics used to evaluate models, and, generally, it is considered that, the closer446
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to 1, the better.447

AUC is the area under the Receiver Operator Characteristic (ROC) curve,448

which is True Positive Rate (TPR) by False Positive Rate (FPR), for a range449

of thresholds. TPR is TP/(TP +FN) and FPR is FP/(FP +TN). Generally,450

models present an AUC between 0.5 and 1, with models closer to 1 usually being451

considered more reliable.452

In this paper, the evaluation metrics acc and AUC presented in the following453

section always refer to the ones calculated based on the verification sample.454

The same model, applied to different samples, generates different acc and AUC455

values.456

7. Results457

In this section, results for the 13 cases are presented. Evaluation metrics458

AUC and acc, calculated based on verification samples, are shown. The resulting459

landslide susceptibility map for each case is also presented.460

In Tab. 3, the average of the verification sample AUC and accuracy acc for461

different sampling divisions is presented for each case. AUC varies from 0.94462

to 1, while accuracies range from 89% to 100%. Evaluation metrics based on463

the Buffer Only (BO) sampling are lower than those from Buffer and Rectangle464

(BR). Rectangle Only (RO) presented the best evaluation metrics of all, for465

which AUC is 1 and accuracy is 100%, indicating all the models trained achieved466

100% of right classifications. These evaluation metrics were calculated based on467

the verification samples presented on Fig. 6, and averaged for all five divisions.468

For the RO case, in all divisions, FN and FP are zero, and TP and TN are at469

their maximum values, for a given threshold. It also means that as TPR may be470

written as TP/(TP +0), if TP 6= 0, this results in TPR = 1. Analogously, FPR471

is 0/(0 + TN) = 0, therefore, for TN 6= 0, FPR = 0. This occurred because all472
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the occurrence samples were in the scarped areas and all the nonoccurrence473

samples are in the rectangle on the valley (in the training, validation and474

verification sets), resulting on the fact that the model reproduced this pattern.475

Minimum distances to scars influences the resulting evaluation metrics values.476

Between cases of the same group, the larger this distance, the higher the AUC477

and the acc.478

Table 3: Summary of cases and their verification sample AUC and acc.

AUC acc

Buffer Only (BO)

BO 00m 0.9409 89.45%
BO 50m 0.9494 90.26%

BO 200m 0.9524 90.67%
BO 500m 0.9569 91.18%

BO 1000m 0.9586 91.24%
BO 2500m 0.9662 92.28%

Buffer and Rectangle (BR)

BR 00m 0.9616 92.33%
BR 50m 0.9647 92.28%

BR 200m 0.9682 93.05%
BR 500m 0.9686 92.96%

BR 1000m 0.9680 93.19%
BR 2500m 0.9806 95.09%

Rectangle Only (RO) 1.0000 100.00%

Part of our analysis consists of the observation of the susceptibility maps479

generated. Thus, it is necessary to plot maps for each case. These maps are480

simple averages of the maps generated from the five different sample divisions481

(in training, validation and verification, see Tab. 2). In this paper, for the maps482

shown, the range of susceptibility is continuous, as the output is provided by483

the ANN. No classification or alteration was performed prior to map plotting.484

In Fig. 8, resulting susceptibility maps are shown for the six cases comprised485

on the Buffer Only non-ocurrence sampling. All the six maps generated using486

this nonoccurrence sampling procedure are satisfactory and tend to present487

scarped areas as susceptible. BR 200m, BR 500m and BR 2500m show non-null488
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susceptibility values in places in the top of the mountain, generally considered489

safe.490
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Figure 8: Buffer Only (BO) resulting susceptibility maps.

Hazard susceptibility maps were also plotted for Buffer and Rectangle cases491

(Fig. 9). They are very alike the maps generated for cases of group BO. Some492

of these maps also present diversions on the mountain top area.493

A susceptibility map was generated based on the models of case Rectangle494

Only, that considers only an area in the valley as non-susceptible (Fig. 10).495

According to this map, the plateau area would be considered susceptible, which496

is known to be a misclassification. Comparing Fig. 10 to Fig. 6, it is possible to497

see that the nonoccurrence samples (for training, validation and verification) are498

contained in the area classified as not susceptible, and the occurrence samples499

(for training, validation and verification) are contained in the area classified500

as susceptible. Therefore, they were all correctly classified, corroborating the501
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Figure 9: Buffer and Rectangle (BR) resulting susceptibility maps.

evaluation metrics AUC=1 and acc=100% presented in Tab. 3. It is the least502

constrained case, as well, and would not be considered suited for zonation503

because a vast area is considered susceptible.504
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Figure 10: Rectangle Only (RO) resulting susceptibility map.
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8. Discussions505

If the criterion to select not susceptible areas was similar to the one used by506

Gomez and Kavzoglu (2005); Choi et al. (2010), the selection of nonoccurrence507

samples would be based on selecting places known not to be prone to landslides,508

such as the valley area. For this reason, this sampling would be somewhat509

similar to using a rectangle in the valley area, such as done on case Rectangle510

Only (RO). As observed, this sampling provided the best evaluation metrics,511

since every sample was correctly classified. If we were to choose between512

nonoccurrence sampling methods based only on the evaluation metrics analyzed,513

we would point RO case as the best option. However, it should be noted that the514

evaluation metrics are not suited for direct comparisons in this case, because the515

verification samples composition is different. Also, when the map is observed,516

and, specially, when it is confronted with maps generated with samples based517

on other procedures, the difference is clear. The map generated by RO is not518

constrained, it classifies a vast area as susceptible, including the plateau area519

which is known for not being susceptible to landslides. That may be considered,520

depending on the point of view, as incompatible with reality. It would as well not521

be suited for hazard zonation for this motive. The reason it has high evaluation522

metrics has no connection with being more precise - in fact, it is the opposite523

- the samples provided as a dataset for training are too easy to classify. They524

are so distant from each other, and so different in many aspects that even a525

’loose’, ’careless’ classification would classify every single one of them correctly.526

In other words, it is not hard for the model to achieve 100% accuracy because527

the samples themselves are biased. This may also be the reason why, in Gomez528

and Kavzoglu (2005), high accuracy was achieved, even if the map shown seems529

to reflect an interpretation of the terrain Elevation attribute.530
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Zhu et al. (2019) also observed this effect. Models based on nonoccurrence531

samples that are very different from the occurrence samples provide higher532

accuracies, although the maps generated based on them roughly overestimate533

occurrence areas. This resonates to what is observed by the present authors.534

Hong et al. (2019) results showed that sampling methods that acquire nonoccurrence535

samples in a similar setting but farther from occurrence samples result in maps536

with larger susceptible areas, also in agreement with the present analysis. This537

is not necessarily wrong or provides worse maps, although excessive intervention538

of human expert knowledge-based processes on dataset forming hinders the539

possibilities for the ANNs to find their own ways.540

The evaluation metrics were calculated to test the intrinsic adjust of each541

model, in which the RO case resulted in a perfect adjust to the samples that542

were provided to it. However, notably, the evaluation metrics hereby cited are543

not calculated based on the same verification sample, as they would be in an544

ideal setting. That said, the same effect discussed for RO can be observed with545

the increase on the minimum distance (internal buffer) on which the sample is546

acquired. Even if all BO cases are generating similar maps, the farther from547

the scars these samples are, the easier they are to classify. On BR samples, the548

evaluation metrics of the models were in between the values of BO and RO,549

but the maps looked much more like BO maps. It is possible to think that the550

easily classifiable samples, provided by the rectangle on the lowlands, made it551

easier for the model to classify the verification set, which is acquired from the552

same sample pool as the training and validation sets for each case, and this553

pool had now easy-to-classify samples. We should remark that easier-to-classify554

does not equate directly to being better because it does not force the model to555

train more in order to discriminate between samples that are alike, but produce556

different outcomes, and purposeful comparisons can only be done if the metrics557
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are calculated based on similar samples.558

As observed by Zhu et al. (2018), the existence itself of the nonoccurrence559

samples in the calibration/training of a method has a remarkable effect on560

its resulting maps. They also discussed that methods that use nonoccurrence561

samples tend to constrain the over-prediction of high susceptibility. With the562

analyses here presented, we show that not only their presence is important, but563

their location and their acquisiton process are as well relevant. Many previous564

works had not presented the location neither commented on the method used565

to extract nonoccurrence samples, and yet, as we observe, this information is566

relevant to interpret the resulting evaluation metrics correctly.567

9. Conclusion568

In the present paper, we have provided answers to pressing questions regarding569

nonoccurrence samples used to train ANN models for landslide susceptibility570

assessment. Using 13 cases with different locations for the nonoccurrence samples,571

325 ANNs were trained to provide a reliable outlook on this subject.572

For the conducted analyses, AUC and accuracy were chosen as example573

evaluation metrics because they are two of the most commonly used. Although574

more research in this area is needed for all possible methods for nonoccurrence575

sampling to be contemplated, we showed that the locations of these samples576

are very relevant, with visible effects on the generated map. By intervening577

and choosing nonoccurrence samples that are distant and have very different578

attributes from the occurrence ones, we have shown that, using this configuration,579

ANN, as it is a data-driven model, is not capable of acquiring the necessary580

knowledge in order to correctly discriminate between susceptible and non-susceptible581

areas. This is possible to observe in the maps generated, which are not constrained.582

A probable explanation to why occurrence and nonoccurrence samples used to583
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train the models tend to be different in these settings is that the classification584

human knowledge allows us to do (such as choosing the lowlands as the nonoccurrence585

area) is likely not thorough enough. This is one of the reasons why researchers586

usually do not rely solely on human perception for susceptibility mapping, using587

models instead. Even if, in this case, AUC and acc metrics are maximized,588

because all classifications are right, this happens because the sample has a biased589

configuration that makes it too easy for the model to provide the right output.590

Expert knowledge is very important to landslide-related studies. However, in591

many cases, this expert knowledge intervention should, instead of being applied592

on the formulation of the sample, (e.g. including a rectangle on the lowlands),593

be applied to the delimitation of the application areas of the final ANN model.594

Therefore, a possible course of action would be admitting a priori that the flat595

regions are not susceptible and, based on that, not generating the maps with596

the model in these regions, if a problem in which the model has not captured597

the knowledge of how to classify the lowlands is observed. Another way to put598

it, one can say that what is meant with the inclusion of easily classifiable areas599

is achievable anyway by defining the application areas possible to be mapped600

by the model.601

In many previously published papers, the locations and methods of acquisition602

of nonoccurrence samples are not presented or commented. However, we have603

shown that these are important aspects to be considered when analyzing the604

evaluation metrics of an ANN model for landslide susceptibility. Overall, based605

on the empirical evidences presented, we can state that using easily classifiable606

samples, the model may present high accuracy and AUC, without necessarily607

this equating to the generation of generalizable map.608
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